Eficient production of active form of vitamin D₃ by microbial conversion

Tomohiro Tamura

Bioproduction Research Institute National Institute of Advanced Industrial Science and Technology (AIST)

0.5µm

Oct. 7, 2015

Vitamin D₃

-Vitamin D is a group of fat-soluble secosteroides, the two major forms of which are vitamin D_2 (or ergocalciferol), and vitamin D_3 (or cholecalsiferol).

-Vitamin D_3 (VD₃) has important functions in modulating calcium metabolism in mammalians.

-the most active form, 1α , $25(OH)_2VD_3$ has been used in treatment of chronic renal failure, hyperparathyroidism, osteoporosis, and psoriasis.

•osteoporosis is present in 15% of those 50–59 years of age, but these figures increase quickly to 70% of those over 80 years of age (WHO2015)

Mechanism of action

One of the most important roles of vitamin D_3 is

- maintaining skeletal calcium balance by promoting calcium absorption in the intestines, promoting bone resorption by increasing osteoclast number.
- maintaining calcium and phosphate levels for bone formation, and allowing proper functioning of parathyroid hormone to maintain serum calcium levels.

- Half-life $25(OH)VD_3$ 1/2t = 15 day $1\alpha,25(OH)_2VD_3$ 1/2t = 15hr
- Blood concentration

25(OH)VD₃ 30~80 nmol/L (12 ~ 32 ng / ml)

The required daily intake

5 µg / day

Tolerable upper intake level

50µg / day for adult

Synthesis of active form of vitamin D₃

Chemical processes

Synthesis of active form of vitamin D₃

Bacterial conversion

Bacterial and fungal strains producing 1α ,25(OH)₂VD₃ from VD₃ were screened and the actinomycete *Pseudonocardia autotrophica* was identified in 1992.

Pseudonocardia autotrophica

Vitamin D₃ hydroxylation by *Pseudonocardia autotrophica*

NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AIST)

Production of vitamin D₃ hydroxylated forms

prices are from Sigma catalog (1\$ = \$120)

Objective

Identify and characterization of VD₃ hydroxylase and development of bacterial platform for the effect production of hydroxylated forms of vitamin D₃

Vitamin D₃ hydroxylase (Vdh)

The actinomycete *Pseudonocardia autotrophica* was identified in 1992 as a bacterial strain producing 1α ,25(OH)₂VD₃ from VD₃.

- vitamin D₃ hydroxylase was purified from *Pseudonocardia autotrophica*.
- the vdh gene encodes a protein containing 403 amino acids with a molecular weight of 44,368 Da.
- this hydroxylase was found to be homologous with the P450 belonging to CYP107 family.

Properties of Bacterial P450

Fdr; Ferredoxin reductase Fd; Ferredoxin FAD; Flavin adenine dinucleotide Fe-S; Fe-S cluster

- Versatile biological catalyst (steroid biosynthesis, xenobiotics metabolism, secondary metabolites biosynthesis etc.)

- Catalyze hydroxylation, dealkylation, epoxidation, etc.
- Bacterial P450s exist as soluble enzymes (Eukaryotic P450s exist as membrane-bound enzymes)

Kinetic parameters of Vdh and other VD3 hydroxylating enzymes

Vdh Vdh VD ₃ Hydroxyla	HEME	Vd	h HEME	μοι Ηοι 1α,25	→ OH → → → → → → → → → → → → → → → → → → →
	Vdh	<i>Streptomyces</i> CYP105A1	Human CYP27A1	Mouse CYP27B1	Human CYP2R1
25-hydroxylase activity against	VD ₃				
K _m (μM) V _{max} (mmol/min/mol of P450) V _{max} /K _m	9.1 244 27	0.54 16 30	3.2 270 84	ND ND ND	4.4 480 109
1α-hydroxylase activity against 25(OH)VD ₃					
K _m (μM) V _{max} (mmol/min/mol of P450) V _{max} /K _m	3.7 588 159	0.91 3.6 3.9	3.5 21 6	0.05 2730 54600	ND ND ND

Rhodococcus erythropolis as a host cell

- 1. Growth at a wide temperature range
 - 4 35 °C (*R. erythropolis*)
- 2. Organic solvent resistance
 - Ethanol, Acetone, Propanol, DMSO, Ethylacetate, etc
 - \Rightarrow cells can grow under a variety of conditions
- 3. Broad catabolic diversity
 - toxic compound degradation, PCB degradation, steroid compound production, desulfurization, antibiotics production etc.

The genus *Rhodococcus* may uses as platform to apply for a wide range of processes

AIST

Development of a VD₃ hydroxylation system by using *Rhodococus erythropolis* as a host cell

Problems to be solved

1. Solubility of vitamin D₃

2. Permeability of vitamin D₃

3. P450vdh and its redox partner

Poor solubility and low transport rates of the substrates and products to and from cells are the rate limiting steps in the biotransformation process.

Vitamin D solubility in water < 0.1g / L (20°C)

Cyclodextrins and Bioconversion

β-Cyclodextrin

CD is circularized oligo saccharide:

Taking guest molecule to inner cavity solubilization of hydrophobic compounds stabilization of the taken compounds

CD	Mass	Outer diameter (nm)	Cavity diameter (Inner ring/Outer ring, nm)	Solubility (g/kg H ₂ O)
α	972	1.52	0.45/0.53	129.5
β	1134	1.66	0.60/0.65	18.4
γ	1296	1.77	0.75/0.85	249.2

Effect of cyclodextrins on vitamin D₃ hydroxylation

Development of a VD₃ hydroxylation system by using *Rhodococus erythropolis* as a host cell

Multiple insertions of *pip* expression cassette into *Rhodococcus* genome

Multiple integration of Vdh expression cassette and the efficiency of VD₃ hydroxylation

AIST

Permeability of vitamin D₃ to cytoplasm is low

Problems to be solved

1. Solubility of vitamin D₃

2. Permeability of vitamin D₃

3. P450vdh and its redox partner

Nisin

- a natural antimicrobial agent
- 34 amino acids
- produced by Lactococcus lactis
- "broad-spectrum" bacteriocin effective against many grampositive bacteria
- used as a food preservation in over 50 countries (used in processed cheese, meats, beverages etc.); since 2009 in Japan.

Nisin pore complex

* Lipid II = peptideglycan precursor

Chatter et al., Chem Rev (2005) 105: 633-683.

Effect of nisin on translocation of Green Chemiluminescent Cycrodextrin (GCCD)

Model substrate : Green Chemiluminescent γ-Cycrodextrin (GCCD)

AIST

Using the hypoxanthine-xanthine oxidase system for the generation of the superoxide anions, the chemiluminescent probes showed higher superoxide-induced chemiluminescence intensity (530nm)

> γ-Cyclodextrin glucose : 8 diameter : 17.5Å depth : 7.9Å

VD₃ hydroxylation in nisin treated cells

AIST

Permeability is induced by nisin

Production of 25(OH)VD₃ by nisin treated cells

GICDH

glucono-δ-lactone

Development of a VD₃ hydroxylation system by using *Rhodococus erythropolis* as a host cell

2. Permiability pTipQC2-Vdh-ThcCD Nisin-Lipid II pore (2-2.5 nm)) e ThcD Vdh но' ADH ThcC VD_3 Ferredoxin Ferredoxin P450 reductase glucose NAD

PMBCD

HO)

25(OH)VD₃

ОН

Problems to be solved

1. Solubility of vitamin D₃

2. Permeability of vitamin D₃

3. P450vdh and its redox partner

Structure of wild-type Vdh

AIST

Protein engineering of Vitamin D₃ hydroxylase

Screening for Vdh mutant with high activity

Vdh K1mutant

Y. Fujii, et al., Biochem. Biophys. Res. Commun., 385(2), 170-175 (2009).

Structure of Vdh K1 mutant

Resolution: 2.0-2.1 Å No. monomers in the AU: 5

VD3 complex R-factor: 21% Free R-factor: 25%

25OHVD3 complex R-factor: 19% Free R-factor: 24%

Structural changes between Vdh-wt and Vdh-K1

Open form

Closed form

Electrostatic potentials of Fdx-binding surface of Vdh-WT and Vdh-K1

It is known that the P450-binding surface of Fdx is negatively charged and the Fdx-binding surface of P450 is positively charged

Blue : positive Red : negative

Structural analysis of substrate-VDH complex

mutation of amino acids interacting with substrate

mutants change

- Substrate specificity
- Regiospecificity

Substrate binding pocket of Vdh-K1

VD_3 complex

250HVD₃ complex

Can P450Vdh-AciB interaction improve?

Mutational study on Vdh activity

Mutational study on Vdh activity

Mutants	relative activity
WT	1.0
T96 <mark>D</mark>	0.5
F106V	ND
T107 <mark>A</mark>	79.2
V108P	0.7
H342 <mark>F</mark>	1.4
F346 <mark>R</mark>	1.2
L348 <mark>M</mark>	ND
Q351 <mark>R</mark>	2.2

Enzymatic activity of Vdh-WT 0.070 ± 0.011 mol/min/mol of P450

Expression level of Vdh-T107A mutant in *Rhodococcus erythropolis*

Kinetic parameters for AciB on VD₃ 25-hydroxylation activity

Vdh-K1 and Vdh-T107A enhance binding activity to AciB

	<i>Κ</i> _m (μΜ)	V _{max} (mol/min/mol of P450)
Vdh-WT	85.7 ± 8.4	0.81 ± 0.18
Vdh-K1	19.7 ± 4.1	20.8 ± 1.37
Vdh-T107A	24.5 ± 3.8	23.0 ± 1.40

Electrostatic potentials of Fdx-binding surface of Vdh-WT, Vdh-K1 and Vdh-T107A

It is known that the P450-binding surface of Fdx is negatively charged and the Fdx-binding surface of P450 is positively charged

Blue : positive Red : negative

Optimization of *Rhodococcus* cells

Development of a VD₃ hydroxylation system by using *Rhodococus erythropolis* as a host cell

AIST

Development of a VD₃ hydroxylation system by using *Rhodococus erythropolis* as a host cell

Large scale bioconversion of vitamin D_3 to 25(OH)VD₃

Vitamin D₃ hydroxylation in different bacterial platform

host	enzyme	25(OH)VD ₃ production rate	25(OH)VD ₃ production/h (fold)	Ref.
P. autotrophica	Vdh-WT	137µg/ml/48h	2.85 (1)	(1)
E. coli *	Vdh-WT	216µg/ml/24h	9.00 (3.2)	(2)
S. lividans	SU-1-R73V/R84V	7.8µg/ml/24h	0.33 (0.1)	(3)
R. erythropolis	Vdh-WT	53µg/ml/24h	2.21 (0.8)	(5)
R. erythropolis $^{\parallel}$	Vdh-WT	342µg/ml/16h	21.38 (7.5)	(4)
R. erythropolis ‡	Vdh-T107A	573µg/ml/2h	286.50 (100.4)	(5)
* tolC acrAB mutant nisin treated、BmGlcDH [‡] nisin treated、BmGlcDH	I was added in the reaction was expressed	(1) Takeda (2) Fujii et (3) Hayasl (4) Imoto e	a et al., <i>JFB</i> (1994) al., <i>BBB</i> (2009) hi et al., <i>FEBS</i> J (2010) et al., <i>BBRC</i> (2011)	

(5) Yasutake et al., ChemBioChem (2013)

Development of a VD₃ hydroxylation system by using *Rhodococus erythropolis* as a host cell

GICDH

glucono-δ-lactone

Development of a VD₃ hydroxylation system by using *Rhodococus erythropolis* as a host cell

2. Permiability pTipQC2-Vdh-ThcCD Nisin-Lipid II pore (2-2.5 nm)) e ThcD Vdh но' ADH ThcC VD_3 Ferredoxin Ferredoxin P450 reductase glucose NAD

PMBCD

HO)

25(OH)VD₃

ОН

Development of a VD₃ hydroxylation system by using *Rhodococus erythropolis* as a host cell

AIST

Development of a VD₃ hydroxylation system by using *Rhodococus erythropolis* as a host cell

Thank you !!!

NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AIST)