

Series - 12

Date and Time – Oct. 7, 2015 (12:30~13:30) Venue - Central 4 (2F) Meeting Room 1

Speaker - Tomohiro TAMURA

Affiliation -Bioproduction Research Institute, AIST, Japan

E-mail: t-tamura@aist.go.jp

Title – Efficient production of active form of vitamin D₃ by microbial conversion

Vitamin D_3 (VD₃) is a fat-soluble prohormone that plays a crucial role in bone metabolism, immunity, and the control of cell proliferation and differentiation. The most active form, 1α ,25(OH)₂VD₃, is used to treat osteoporosis, hyperparathyroidism, psoriasis, and VD₃ metabolic abnormality. The industrial production of 1α ,25(OH)₂VD₃ is performed chemically or microbiologically, but the processes for the microbiological production of the active form of VD₃ are simpler than those for chemical synthesis.

The actinomycete $Pseudonocardia\ autotrophica\$ is capable of bioconversion of VD_3 into its physiologically active forms, $25(OH)VD_3$ or $1\alpha,25(OH)_2VD_3$. We identified vitamin D_3 hydroxylase (vdh) from $P.\ autotrophica$ and characterized it structurally and enzymatically. Biotransformation of VD_3 into $25(OH)VD_3$ was then accomplished with a Vdh-expressed recombinant strain of actinomycete $Rhodococcus\ erythropolis$. We have recently succeeded in significant improvement of cellular permeability of vitamin D3 by using nisin-treated cells, and have developed a new platform for vitamin D_3 hydroxylation process.

In this seminar, I would like to introduce how to improve the efficiency of production of hydroxylated form of vitamin D3 by using *Rhodococcus erythropolis* as a host cell.